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ABSTRACT
Autonomous driving simulators are commonly used to develop au-
tonomous driving systems (ADS) since they provide the flexibility
to experiment with scenarios that could even be dangerous in a
real setting. This flexibility, however, comes with the possibility of
experimenting with unrealistic scenarios. To this end, we present
an initial co-simulation framework integrating OpenModelica and
CARLA to enable real-time communication between them. As a
proof of concept, we experimented with two Modelica models (air
resistance and energy consumption). We connected the two models
with CARLA to enable real-time communication between them to
ensure the realism of scenarios in addition to connecting CARLA
with OpenWeather through its API to access real weather condi-
tions. We conducted experiments with a specific virtual electric
vehicle (Tesla Model 3) running on the 𝑇𝑜𝑤𝑛06 map in CARLA.
Results provide preliminary evidence that co-simulation with Mod-
elica models improved the realism of the virtual vehicle in CARLA.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Computing methodologies→ Simulation support systems;
Artificial intelligence.
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1 INTRODUCTION
In the context of developing and testing autonomous driving sys-
tems (ADS), autonomous driving simulators are often employed.
This is simply because it is costly and even impossible to test a
real ADS in a real-world setting with all possible driving scenarios.
Moreover, some scenarios are highly unsafe to be tried in the real-
world. To this end, several autonomous driving simulators (e.g.,
CARLA [5]) are publicly available having different strengths and
limitations, as discussed in [14]. For instance, CARLA can be used
for end-to-end testing of ADS, but lacks the support of realistic
simulation of vehicle dynamics.

Particularly, in the real world, the performance of vehicles is
restricted by many factors, such as gas consumption or battery
capacity. However, in the virtual world, virtual vehicles are very
flexible and might be very unrealistic. For instance, with CARLA
and LGSVL [21], the maximum speed of a virtual vehicle is only
constrained by a pre-set speed limit in a simulation, and the vehi-
cle can keep driving until reaching the destination or terminating
the simulation. Therefore, such a virtual vehicle cannot fully cap-
ture the behavior of physical vehicles without considering energy
consumption and air resistance, and is therefore unrealistic.

To enhance the realism of virtual vehicles in autonomous driv-
ing simulators, we propose to benefit from real-time co-simulation
[23] of Modelica models and virtual vehicles, where a real-time
connection between open source OpenModelica (an open-source
Modelica-based modeling and simulation environment) [8], and
CARLA is established. As shown in Figure 1, the overall application
context of our approach is about bridging the gap between the
physical and virtual worlds. Specifically, Modelica models capture/-
model vehicle dynamics from the perspective of mechanical and
electrical engineers. A virtual vehicle (which is situated in a virtual
environment, i.e., autonomous driving simulators) digitally repre-
sents a vehicle in the real world. Moreover, weather conditions (e.g.,
temperature, humidity) in the autonomous driving environment
can be simulated with real weather data of a specific geographical
location. The virtual world is therefore represented by the Modelica
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models (simulating vehicle dynamics), the virtual vehicle (simulat-
ing vehicle behaviors such as route planning, steering, braking),
and the virtual driving environment (i.e., CARLA).

In this paper, as the initial intent of realizing the aim described
above, we propose a co-simulation framework that combines Open-
Modelica and CARLA. The framework connects two Modelica mod-
els with CARLA in real-time. The first model is an energy con-
sumption model adapted from an existing Modelica model (built in
MBEV [1]), whereas the second model captures air resistance be-
havior. In addition, we enabled CARLA to receive real-time weather
data from OpenWeather 1 through its API. We conducted two sets
of experiments. Within each set, real-time co-simulation between
one of the two Modelica models (i.e., energy consumption and air
resistance) and CARLA has been evaluated. Results show that the
performance, in terms of speed, throttle and so on, of the virtual
vehicle in CARLA exhibits significant differences with and without
introducing the co-simulation with the Modelica models.

Structure. In Section 2, we provide the background for this work.
Section 3 presents our approach, followed by its implementation
in Section 4. In Section 5, we present the empirical evaluation and
analyze the results. Section 6 gives discussions about this work.
Section 7 presents the related work and we conclude the paper in
Section 8.

2 BACKGROUND
In this section, we present the necessary background required to
understand this paper, i.e., an introduction to Modelica, CARLA,
and co-simulation.

Modelica [6, 9, 20] is an object-oriented, multi-domain, graphi-
cal, component modeling language for developing complex cyber-
physical systems (CPS). It has been widely applied in various do-
mains such as robotics, automotive and satellites. In addition, Mod-
elica models have been applied for supporting simulations and
optimizations (e.g., for heating and cooling systems [24] and for
picking manipulator [27]). There exist tools that support modeling
with Modelica, such as Dymola from Dassault Systems France [3],
OpenModelica from the Open Source Modelica Consortium (OSMC)
[8] and MapleSim from MapleSoft [13]. For our work, we opted
for OpenModelica, which has the graphic and textual model editor,
named OpenModelica Connection Editor (OMEdit), and OMPython
for Python scripting. OMEdit is the user interface for modeling, sim-
ulation, and results plotting. OMPython is OpenModelica’s Python
scripting interface with the capability of dealing with commands
and Modelica expressions for the purpose of simulation, plotting,
etc.

OpenModelica also supports the Functional Mock-up Interface
(FMI) 2 standard, which was designed for supporting model ex-
change, co-simulation, and most-importantly tool interoperabil-
ity. More specifically, OpenModelica allows exporting simulation
models as Functional Mock-up Unit (FMU) files, which can, sub-
sequently, be imported to other modeling and simulation environ-
ments such as Unity. Of course, FMU files can also be imported to
OpenModelica. In addition, there is a suite of Modelica libraries for
vehicle systems modeling and analysis.

1https://openweathermap.org/
2https://www.fmi-standard.org/

CARLA (CAR Learning toAct) [5] is an open-source autonomous
driving simulator providing various road characteristics such as
urban layouts, blocks, and traffic signs. Weather conditions (e.g.,
time of the day) in CARLA are configurable. In addition, CARLA
provides a multitude of vehicle models (i.e., virtual vehicles) and
supports a flexible setup of sensor suites. With the help of these sen-
sor suites, the state (e.g., location, speed, and acceleration vectors)
of a particular vehicle model can be reflected and analyzed.

Comparedwith other autonomous driving simulators, e.g., LGSVL
and CarMaker, CARLA continuously enhances its capabilities by
integrating with ROS, and co-simulating with SUMO 3 and PTV-
Vissim 4, etc. Furthermore, CARLA provides open-source code and
open digital assets (e.g., urban maps and vehicle models).

Co-simulation. To run a co-simulation involving more than one
simulators, a co-simulation scenario and an orchestrator algorithm
are needed. Each simulator is capable of consuming inputs, ex-
hibiting behaviors and producing outputs[11]. Co-simulation is not
new; many state-of-art methods, such as discrete event-based co-
simulation, continuous time co-simulation, and a mix of both exist
[10]. Many different projects have benefited from it, and most re-
ports co-simulations with more than two simulators, each of which
is oriented toward models from different domains[10]. As identified
in [23], the most acknowledged challenge of co-simulation is about
standard communication interfaces and protocols among different
simulators and the orchestrator algorithm. FMI has been considered
as the most promising one for enabling co-simulation.

3 APPROACH
Our overall goal is to enhance the fidelity of autonomous vehicles
via real-time co-simulations of OpenModelica and CARLA. As the
concept demonstration, in this paper, we particularly focus on two
application contexts. First, we introduce energy consumption (mod-
eled and computed/simulated in OpenModelica) to virtual vehicles
situated in CARLA, such that their behaviors are more realistic after
accounting for the effect of the real-time battery discharging on
the vehicle’s speed. Second, we introduce air resistance to CARLA
via the air density Modelica model, also to improve the fidelity
of the virtual vehicle in CARLA. We would like to mention that
CARLA’s virtual vehicles have "endless" energy (i.e., battery) and
behave in an ideal situation of not considering air resistance, which
is unrealistic. We aim to make CARLA’s virtual vehicles more real.

The overview of our approach is provided in Figure 1. As shown
in the figure, through the co-simulation, the Modelica model in
OpenModelica amends, in real-time, the virtual vehicle running in
CARLA with additional information, as we discussed above. In the
rest of the section, we present the two application contexts.

3.1 Enhancing Virtual Vehicle’s Behaviors with
Energy Consumption Information

In this subsection, we discuss building an energy consumption
model, collecting engine data in real-time, and enabling co-simulation.
Building energy consumption model. We first start by devel-
oping an energy consumption Modelica model in OpenModel-
ica, which is presented in Figure 2. As shown in the figure, the
3https://carla.readthedocs.io/en/0.9.13/adv_sumo/
4https://carla.readthedocs.io/en/0.9.13/adv_ptv/
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Figure 1: Context and Overview

𝑒𝑛𝑔𝑖𝑛𝑒𝐼𝑛𝑝𝑢𝑡 block is an instantiation of the𝐶𝑜𝑚𝑏𝑖𝑇𝑖𝑚𝑒𝑇𝑎𝑏𝑙𝑒 class
in the standard library of OpenModelica. This block generates an
output signal by linear interpolation in a table like the one shown
in Listing 1. The first column contains time points (in 𝑠𝑒𝑐𝑜𝑛𝑑𝑠) and
the second and third columns are data being interpolated, i.e., the
engine rotating speed values (in 𝑟𝑎𝑑/𝑠) and the torque values (in
N ·m). This table is in the format of a txt file called ReadData.txt,
which is imported by the 𝑒𝑛𝑔𝑖𝑛𝑒𝐼𝑛𝑝𝑢𝑡 block. The 𝑡𝑜𝐸𝑙𝑒𝑃𝑜𝑤 block
then considers the given efficiency map to calculate the power
from the engine’s mechanical input, and passes the power value
to the battery module. The 𝑏𝑎𝑡𝑡1 block is the battery block, which
discharges the amount of power based on the input value.

1 Time point Engine rotating speed Torque

2 5.00 469.33 743.0

3 5.01 469.93 743.0

4 5.02 470.52 743.0

5 5.03 471.12 743.0

6 5.04 471.71 743.0

7 5.05 472.3 743.0

8 5.06 472.89 743.0

9 5.07 473.48 743.0

10 5.08 474.08 743.0

11 5.09 474.67 743.0

12 5.10 475.25 743.0

Listing 1: Example of the Engine Input Table (from CARLA)

Collecting engine data at real-time. CARLA provides Python
API, through which we build a virtual world simulating the driving
environment. This world is constantly refreshed after a time step.
CARLA 0.9.13 provides the showdebugtelemetry function, which
can display the engine data at each time step, while the vehicle is

driving. Inspired by this function, we newly developed a function,
named as 𝑔𝑒𝑡_𝑟𝑝𝑚 (partially shown in Listing 2), and added it to
the CARLA source code, which is divided into two parts. The first
part opens up memory with a size of 4 bytes when the simulator
is turned on. The second part accesses the memory created in the
previous step and writes the RPM (Revolutions Per Minute) value
of the vehicle’s engine to the memory every time the simulator
is refreshed. Accessing the memory is fast enough to collect RPM
values at each time step. At the same time, each vehicle in CARLA
has a customized torque curve. According to the curve and a given
RPM value, we can get the corresponding torque value. Then the
RPM value can be converted into the rotating speed value when
being divided by a constant. At each time step, the latest rotating
speed value and torque value are added to the last line of a txt file
called WriteData.txt via Python API.
Enabling co-simulation. During a simulation, we have another
process running in a loop function (the orchestrator of this co-
simulation). In each loop, we first read the WriteData.txt added by
Python API and writes data to the ReadData.txt in the engineIn-
put block. Then, we run the energy consumption model through
OMPython to get the current energy consumption status, including
the battery’s current and power loss. Finally, these data are fed back
to CARLA in real-time, and when the current is close to the limit
value, the emergency_stop method provided by CARLA’s Python
API is called. Hence, the Modelica model in OpenModelica can
constrain the vehicle’s driving behaviors in CARLA.

1 #include <sys/mman.h>

2 #include <sys/stat.h>

3
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4 int fd = shm_open("shared_memory", O_CREAT|O_RDWR , 0666 )

;

5 void *p = mmap(NULL , 4, PROT_READ|PROT_WRITE , MAP_SHARED ,

fd, 0);//open up memory

6

7 float rpm = GetVehicleMovementComponent ()->

GetEngineRotationSpeed ();//get the RPM value

8 memcpy(p, &rpm , 4);//write the RPM value to the memory

Listing 2: Newly developed get_rpm function in CARLA

Figure 2: The energy consumption model

3.2 Enhancing Virtual Vehicle’s Behaviors with
Air Resistance Handling Capability

This subsection discusses building the air density model, collecting
real-world data, and enabling co-simulation.
Building the air density model. Air resistance is calculated as
𝑓 = 1/2𝜌𝑆𝐶𝑥𝑉 2. In the formula, 𝐶𝑥 is the air resistance coefficient,
which is related to the material of the force bearing surface of
the vehicle and is generally set to 0.3 for most vehicles. 𝑆 is the
windward area of the vehicle, which is generally set to 2.2 for
normal vehicles. 𝑉 is the speed of the vehicle. Finally, 𝜌 is the air
density (in 𝑘𝑔/𝑚3). The air density is a dynamic value affected by
weather conditions related to temperature and air pressure. The
calculation formula is 𝜌 = 𝑃/(𝑅 ∗𝑇 ), 𝑃 and 𝑇 are pressure (in 𝑃𝑎)
and temperature (in 𝐾), 𝑅 is specific gas constant, equal to 287.05
for dry air. The implementation of the model is given in Listing 3.

1 model AirDensity

2 parameter Modelica.SIunits.Temperature T;

3 parameter Modelica.SIunits.AbsolutePressure P;

4 constant Real R=287.05;

5 Modelica.SIunits.Density D;

6

7 function returnDensity

8 input Modelica.SIunits.Temperature T;

9 input Modelica.SIunits.AbsolutePressure P;

10 input Real R;

11 output Modelica.SIunits.Density density;

12 algorithm

13 density := P/(R*T);

14 end returnDensity;

15

16 equation

17 D = returnDensity(T,P,R);

18

19 end AirDensity;

Listing 3: The air density model

Collecting real-worldweather data.Weobtain real-worldweather
data from OpenWeather, including information of environmental
parameters such as temperature and air pressure, then we store
these data in the json file format. During a simulation, we get access
to the json file and import weather data to CARLA.
Enabling co-simulation. During a simulation, the weather data is
passed to the air density model through OMPython, which outputs
the density value. Next, the air resistance value at the current speed
is calculated according to the air density, and then the air resistance
is added through the add_force function in CARLA’s Python API.

4 IMPLEMENTATION
In this section, we summarize the technical solution of our work
as a whole and present the details with Figure 1. As illustrated
in Figure 1, for this work, we employed OpenModelica to build
two Modelica models (energy consumption model and air density
model) for the purpose of enhancing the realism of dynamics of
the virtual vehicles in CARLA. Our energy consumption model
integrates some components from the MBEV model in the Simpli-
fied Modelling of Electric and Hybrid Vehicles in OMWebBook[1].
Since we are going to implement real-time co-simulation, we need
to execute the Modelica model while the vehicle in CARLA is driv-
ing. OpenModelica provides different ways to execute Modelica
models. In our implementation, we used two ways. The first way is
to use OMPython. To be able to linkModelica models with CARLA’s
Python API, we have to use OMPython. The second way is through
OMEdit, which displays simulation results more intuitively as plots
compared with other ways.

In addition, we developed a new function in the source code
(C++) of CARLA to get real-time RPM values. Moreover, we defined
a function in CARLA’s Python API to calculate torque values corre-
sponding to the acquired RPM and torque curves. To increase the
realism of simulated scenarios, we implemented another function
in CARLA’s Python API to import weather data from OpenWeather
via itsWeather API.

As illustrated in Figure 3, P and Q represent the workflows for
enhancing the CARLA simulator with the energy consumption and
the air density Modelica models, respectively. In the first workflow,
we constructed two txt files. CARLA changesWriteData.txt in each
time step, and the Modelica model reads ReadData.txt in each loop
mentioned in 3.1. This ensures that when the Modelica model reads
the file, another process will not change the file. Furthermore, be-
cause we deployed CARLA and OpenModelica on the same server,
the communication between CARLA and OpenModelica is through
Python API and files.
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Figure 3: Enhanced simulator workflow with two models

5 EMPIRICAL EVALUATION
In this section, we first present the research questions aiming to
answer (Subsection 5.1), followed by the experiment setting (Sub-
section 5.2) and design (Subsection 5.3 and Subsection 5.4), and
results and analyses (Subsection 5.5).

5.1 Research Questions
To evaluate our approach, we design experiments to answer the
following two RQs:

• RQ1: Does our approach effectively constrain virtual vehi-
cles’ behaviors in CARLA with energy consumption infor-
mation from the Modelica model?

• RQ2: Does the real-time co-simulation support our approach
effectively enhance the capability of virtual vehicles in CARLA
to deal with air resistance?

5.2 Experiment Settings
This section provides settings of CARLA (and its ADS), OpenMod-
elica, and driving scenarios.
Settings for CARLA simulator. For our experiments, we selected
the 𝑇𝑜𝑤𝑛06 map in CARLA, which is a long highway with many
entries and exits. The virtual vehicle we used is Tesla Model 3 (an
electric vehicle). As discussed in Section 3, the inputs of the energy
consumptionmodule at each time step are rotating speed and torque
values. However, CARLA does not directly provide torque values.
Instead, it provides a torque curve for each vehicle with the x-axis
being RPM and the y-axis being torque. For our experiments, we
got the torque curve of Tesla Model 3 in CARLA. Through this
curve, we can get the torque value according to the RPM value at

each time step. In addition, we choose CARLA’s simulation mode
as the synchronous one (otherwise than asynchronous) to collect
data at each time step with the time duration being 0.01 seconds.

Our vehicle is controlled by the CARLA’s behavior agent (ADS),
a Python class in Python API, which can be modified by users. The
agent can be configured with different maximum speed limits.

OpenModelica settings. To build and execute our Modelica
models, we employed the latest stable version of OMEdit and
OMPython on the Ubuntu Server. We can execute our Modelica
models through the simulate method in OMPython.
Driving Scenario. To answer RQ1, we chose a urban driving sce-
nario with a five-lane straight road between the start and the desti-
nation on 𝑇𝑜𝑤𝑛06 map (Figure 4). The vehicle accelerates from the
starting point and drives to the destination under the control of the
CARLA’s ADS. Note that the vehicle is expected to autonomously
follow traffic rules and take actions such as lane-switch to avoid
collisions. For RQ2, we chose the same scenario as RQ1 except
that the distance between the destination and the starting point is
farther.

Figure 4: Employed driving scenario in our experiments

5.3 Experiment Design for Answering RQ1
To answer RQ1, we conducted two experiments. The first experi-
ment simply lets the virtual vehicle run in CARLA and we collect
the RPM value of the engine at run-time. In the second experi-
ment, we collect RPM values and also apply our approach to enable
real-time co-simulation between the energy consumption Modelica
model and CARLA to constrain the speed of the virtual vehicle.
More specifically, each collected RPM value at each simulation time
step is used as the input to the energy consumptionModelica model,
which consequently generates current values of the battery. Cur-
rent values are then transferred, at real-time, to CARLA. CARLA
subsequently adjusts the speed of the virtual vehicle to ensure that
it does not go over the speed limit.

In both of the experiments, the speed limit of the vehicle was
set to 60km/h, which is the maximum speed limit on many urban
roads. The charge of the battery module of the energy consumption
model (Section 3.1) was set to 100*3600, which is the default value
for the MBEV model.

During the execution of the two experiments, we also collected
driving speed (measured in km/h) of the virtual vehicle from the
Python API in CARLA. After the execution of the two experiments,



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Chen and Wang, et al.

we run the energy consumption model in OMEdit with the rotating
speed values and torque values collected from the two experiments
as input of 𝑒𝑛𝑔𝑖𝑛𝑒𝐼𝑛𝑝𝑢𝑡 block and derive a plot of the battery current
(measured in A) in the simulation results.

5.4 Experiment Design for Answering RQ2
To answer RQ2, we also conducted two experiments: with and
without our approach applied to enable real-time co-simulation
between air density model and CARLA. For these two experiments,
to set up the environment of the driving scenario in CARLA, we
employed real-world weather data of the Nanjing city on January
8, 2022. This is because, as discussed in Section 3.2, the air density
model calculates air density based on weather conditions. We also
collected the velocity (𝑉 ) of the vehicle at each simulation time step,
which is represented as a three-dimensional vector along x, y and z
axies (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧). We used the formula 𝑓 = 1/2𝜌𝑆𝐶𝑥𝑉 2 (Section 3.2)
to calculate the air resistance.

In addition, because the weather in the real world generally
changes slowly, it is not wise to simulate the time in the simulated
world exactly the same as in the real world, we replace every hour
in the real world with 100 time steps of the simulated world, which
is 10 seconds. We set four different maximum speed limits for the
vehicle, which are 80km/h, 90km/h, 100km/h, and 110km/h. Due to
the default settings of CARLA’s ADS, the maximum speed of the
vehicle will be 2km/h less than the set maximum speed.

Each experiment was performed 30 times to account for the
randomness. During the two experiments, we collected values of
the speed and throttle of the vehicle via Python API. Note that the
value range of the vehicle’s throttle in CARLA is between 0 and 1.

5.5 Results and Analyses
This section presents results for RQ1 and RQ2 in Section 5.5.1 and
Section 5.5.2 respectively.

5.5.1 RQ1. Figure 5 illustrates the real-time changes in the bat-
tery’s current of the two experiments conducted to answer RQ1.
We see that the simulation on the Modelica side terminates after
4 seconds. This is simply because the battery’s current exceeded
the allowed upper limit at the fourth second of the simulation. In
other words, the vehicle runs faster in CARLA than the battery
could be able to support, revealing a very unrealistic simulation sce-
nario. On the other hand, after applying our approach, the Modelica
model was able to provide real-time feedback to CARLA, which
consequently was able to reduce the vehicle’s throttle and keep
the vehicle’s speed within the battery’s current tolerance range (as
shown in Figure 6), which is below 1000A (as shown in Figure 5).

We would also like to acknowledge that, in our current imple-
mentation of the co-simulation, the current value outputted by the
Modelica model is fed back to CARLA, then the vehicle’s speed is re-
duced when the current is about to reach the limit value (as shown
in Figure 6), which, by no means, an optimal solution. However, we
argue that this work only aims to demonstrate the importance and
necessaries of enabling the real-time co-simulation of Modelica and
CARLA, but not optimize the vehicle planning and control.

5.5.2 RQ2. Figure 7 presents the speed changes of the vehicle over
the time with the four different speed limits, blue dots are without

Figure 5: Runtime battery discharging of the vehicle

Figure 6: Runtime speed of the vehicle

air resistance and red dots are with. Each of the sub-figures is the
scatter plot of 30 runs of the normal driving and air resistance
enhanced driving experiments at each time step under each cor-
responding speed limit. The figures show that CARLA performed
very stably across the 30 runs and at each time point differences in
the speed of the 30 runs are very minor, as one can hardly notice
variations.

One can notice from the figure that along with the speed limit
increases, the impact of the air resistance on the vehicle speed
increases, which is reflected as the time needed for the vehicle to
speed up from 0 to the pre-set speed limit. More specifically, when
the speed limit is 80km/h, not much difference can be observed
between the two experiments (with and without introducing air
resistance) when the vehicle accelerates from 0 to the maximum
speed. But, the difference becomes increasingly noticeable when
the speed limit goes up to 110km/h, implying that the vehicle took
longer time to reach the speed limit with air resistance. We counted
the average speed at each time point of the 30 runs with andwithout
introducing air resistance under the four speed limits, Then we
counted the average of speed difference at each time point from the
5th to 15th second since the speed of the vehicle with or without
introducing air resistance is almost the same before the 5th second
and after the 15th second. From Table 1, we can also see that along
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with the increase of the speed limit, the effect of air resistance
increases, as the average speed difference increases from 0.296
all the way to 2.732 when the speed limit goes from 80km/h to
110km/h. The above results are consistent with cognitive common
sense, that is, the faster the moving object, the stronger the feeling
of air resistance, and the greater the impact of air resistance on the
object, e.g., reducing the speed of the movement.

We also performed the Mann and Whitney statistical test [18]
to assess statistical significance of the average speed without and
with air resistance, and calculated the Vargha and Delaney metric
𝐴12 for effect size. We chose the significance level of 0.05 for all the
tests. Results show that for all the speed limits, the p-values are less
than 0.05 and 𝐴12 > 0.5, suggesting that the average speed without
air resistance is significantly larger than with air resistance.

Speed limit 80km/h 90km/h 100km/h 110km/h
Difference (km/h) 0.296 0.730 1.551 2.732

Table 1: Average speed differences of the vehicle (without air
resistance - with air resistance)

Figure 7 demonstrates the influence of air resistance on the ve-
hicle accelerating to the maximum speed. However, it does not
help to distinguish the normal driving and air resistance enhanced
driving when the vehicle reaches the maximum speed. Nonethe-
less, it is clear that, in both experiments, when the vehicle reaches
the maximum speed, its throttle values should be different. More
specifically, the vehicle’s throttle should be a little higher with air
resistance because part of the throttle is for offsetting the air resis-
tance. Therefore, in Figure 8, we plot throttle values to visualize the
difference. It is clear from the figure that the normal driving exhibits
lower throttle values than the air assistance enhanced driving in
all the selected speed limits. In addition, one can observe that at
a higher driving speed, more throttle is required to offset the air
resistance. Therefore, even though we saw a drop in the vehicle’s
throttle stability after adding air resistance, we think this drop is
acceptable.

6 DISCUSSION
This section provides our key findings and discussions based on
the experiment results.
Adapting to different simulators. We selected CARLA as the
subject simulator and enhanced its fidelity via co-simulation with
Modelica models. Moreover, our approach can be extended to other
simulators, e.g., LGSVL [21]. Since LGSVL provides a Python API
similar to CARLA, we can adapt a very similar technical solution to
build a real-time co-simulation between OpenModelica and LGSVL
as discussed in Section 3.
Testing autonomous vehicles with enhanced simulations.
In practice, testing autonomous vehicles usually relies on simu-
lations, and the fidelity of virtual vehicles in the simulations has
non-negligible influence on a simulation-based testing approach.
Based on the evaluation results, we found that an autonomous
vehicle’s speed and throttle significantly differ between enhanced
and un-enhanced simulations. Hence, it is important to have an
approach like ours to help construct testing scenarios to test au-
tonomous vehicles in more realistic simulations.

(a) The speed limit is 80km/h

(b) The speed limit is 90km/h

(c) The speed limit is 100km/h

(d) The speed limit is 110km/h

Figure 7: Speed changes of the vehicle under the simulations
of different speed limits



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Chen and Wang, et al.

Figure 8: Throttle changes of the vehicle under the simula-
tions of different speed limits

Real-time co-simulation vs. static co-simulation Before con-
ducting the experiments reported in this paper, we also performed
similar experiments on LGSVL, an autonomous driving simulator
based on Unity. Unity provides an interface to support FMI and
can directly import FMU files. At the same time, OpenModelica
provides the function of outputting models as FMU files, so we can
output Modelica models as FMU files and directly import them into
Unity, which is very convenient. However, the limitation is that
when we want to use different weather data, we need to import the
FMU files again, which is contrary to our idea of enabling real-time
simulation.
Impact of network communication protocols on simulations.
As said earlier, we tried out similar experiments with LGSVL, on
which Apollo was deployed. With these experiments, we also en-
hanced the virtual vehicle in terms of dealing with the air resistance
in LGSVL. However, Apollo communicates with LGSVL with the
UDP protocol through the bridge module, but this communication
can be easily affected by network conditions and network condi-
tions consequently affect simulation results. Therefore, we did not
choose LGSVL as the simulator for the experiments reported in this
paper.
Cost, Effectiveness, and Scalability One of the primary efforts to
apply our approach is to build the Modelica models. However, such
cost is typical when developing and testing autonomous vehicles.
Also, note that there already exist model libraries in OpenModel-
ica that can already be used to enhance simulators. Even if such
modeling is required to be done from scratch, it pays off in terms of
ensuring the quality of the ADS being developed. Moreover, such
models can also be reused for different ADSs, thereby reducing this
effort. However, we acknowledge that more dedicated experiments
are needed to assess the cost and effectiveness of our approach
in the future. Similarly, in terms of scalability, we need more de-
tailed experiments in the future since we only demonstrated that
our approach works with only two models and connection with
CARLA.

7 RELATEDWORK
As a modeling language, Modelica provides the capability of mod-
eling mechanical, electrical and electronic components of complex

CPS. In the automotive industry, Modelica has been commonly
applied. For example, towards the development of small electric
vehicles, as reported in [12], both vehicle dynamics and energy
consumption have been taken into consideration when developing
a full vehicle model based on the Vehicle Dynamics Library (VDL)
of Dymola for Toyota. Focusing on e-tron (the Electric drive Audi
sports car), the Modelica Standard Library was adopted to model
the electric power steering system based on Dymola [4]. Towards
the design and implementation of an automatic commercial ve-
hicle transmission platform (TraXon) of TF, the authors of [15]
proposed a Modelica library and a modular transmission model
based on Dymola. In [7], a Modelica library was proposed for mod-
eling electrified powertrain components. In summary, Modelica
and its simulation environments have been adopted in industry
for years, while more and more in-house Modelica libraries are
increasingly being built.

Autonomous driving, as an important research and development
direction of the automotive industry, attracts attentions from both
academia and industry. To verify the key characteristics (e.g., safety,
energy consumption and comfortableness) of Advanced Driver
Assistance Systems (ADAS) or ADS of autonomous vehicles, co-
simulation [23] has been adopted to simulate reality (with diverse
kinds of simulators focusing on driving environments, virtual ve-
hicles, etc) while reducing the costs, such as in generating driving
scenarios and potential damages to real vehicles. Soma [25] de-
signed and implemented the parallel operation of the Drag Force
Modelica model and CARLA, and proved that the Drag Force model
can return actions to CARLA through speed comparison experi-
ments. The authors of [19] proposed a co-simulation framework
combining IPG CarMaker (model vehicle dynamics) and VISSIM
(a traffic flow simulation software) through a Matlab GUI, which
specifically focuses on creating realistic traffic environment for
ADS testing. Replacing VISSIM with SUMO, the authors of [17] pro-
posed a co-simulation framework for cooperative driving functions.
Towards the design and evaluation of ADAS, a co-simulation frame-
work that combines Modelica models (vehicle dynamics), Simulink
models (vehicle control) and Unity (environmental conditions) was
proposed in [26]. To better integrate these models, a set of model-
ing tools Dymola, Simulink and Unity 3D and the integration tool
OpenMETA have been used in [26]. Based on a real (physical) indus-
trial logistic self-driving vehicle, the authors of [22] built a wheel
model (with Modelica) to reflect and compute bore friction. With
FMI and FMU, this model was deployed as ROS node and validated
on the ActiveShuttle Dev Kit prototype. Focusing on the control
of electric vehicles, in [2], a co-simulation platform that combines
CarSim (simulator) and Simulink. Also by combining CarSim and
Simulink, the authors of [16] carried out a co-simulation towards a
self-built in-wheel motor drive vehicle. With this real vehicle, the
authors performed tests on a specific campus road.

As a key enabling technique, co-simulation is widely used for
testing and verification of ADSs. Diverse kinds of simulators (e.g.,
CARLA), vehicle dynamic models (built with Modelica) and ve-
hicle control functions (modeled with Simulink) were (or being)
developed by both academia and industry. While the mechanism
of combined use of these models and tools are being proposed by
researchers towards different practical objectives, such as finding
safety-critical driving scenarios.
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Towards a similar research target, Soma [25] introduced an ex-
isting Drag Force Modelica model into CARLA, whose feedback to
CARLA was to change the speed of the vehicle. Compared with
our approach, Soma’s approach is not real-time, which could be
easily affected by CARLA’s autopilot mode. Also, the real weather
conditions was not introduced.

Considering the real-time communication issue (among different
simulators), some existing co-simulation works (e.g., [19]) achieve
this by synchronously deploying and executing the simulators (by
sharing corresponding information such as road network topol-
ogy), while other works try to achieve real-time communication by
sending real-time data (messages), for example via UDP [22] among
simulators. In our approach, we achieve real-time co-simulation by
instant messaging through Python API, which takes the simulation
cycle into account.

8 CONCLUSION
Simulators play a key role in the development and testing of au-
tonomous driving systems (ADS). Therefore, co-simulation that
combines various simulation units (e.g., vehicle dynamics models,
vehicle control models, and physical environment) is necessary
to improve the realism of simulations. To enhance the fidelity of
autonomous vehicles in virtual environment, we proposed a co-
simulation framework integrating OpenModelica and CARLA. By
employing OpenModelica, two Modelica models are developed for
computing energy consumption and air resistance. By solving sev-
eral technical challenges (e.g., modifying source code of CARLA,
integrating third-party plug-ins), we integrated these two models
with CARLA in real-time. Two sets of experiments were conducted
to verify our co-simulation framework. Experiment results show
that the co-simulation framework we proposed improved the real-
ism of the virtual vehicle in CARLA. In our future work, we will
consider more about the physical reality (e.g., build consistent con-
nections among physical vehicles, virtual vehicles and Modelica
models), extend the co-simulation framework to optimize the plan-
ning and control of virtual vehicles and combine our approach with
simulation-based autonomous vehicles testing.
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